

보도자료

2019년 2월 28일(목) 조간부터 보도하여 주시기 바랍니다. (인터넷, 방송, 통신은 2. 27.(수) 오전 11시 이후 보도 가능)

배포일시	2019. 2. 27.(수)	담당부서	표준정책과	
담당과장	오광해 과장(043-870-5360)	담 당 자	임완빈 연구관(010-3897-9522)	

kg, A(암페어)의 새롭게 바뀐 정의, 법령에 반영

- 국가기술표준원 「국가표준기본법 시행령 개정(안) 」 공청회 개최 -

- □ 질량(kg), 전류(A), 온도(K), 물질의 양(mol)을 나타내는 국제 기본 단위에 대한 정의가 올해 5월 20일부터 변경됨에 따라, 정부가 관련 법령 개정을 추진한다.
- 산업통상자원부 국가기술표준원(원장 이승우)은 국제 기본단위 재정의를 법령에 반영하기 위해, 2월 27일(수) 한국기술센터에서 국가표준기본법 시행령 개정(안) 공청회를 개최했다.
- □ 이번 법령 개정은 국제도량형총회(CGPM)에서 국제단위(SI)*가 재정의 된 데 따른 후속조치의 일환이다.
 - * 국제단위계(SI, The International System of Units): 미터법을 기준으로 1960년 국제도량형총회(CGPM)에서 국제표준으로 확립한 단위 체계로 초(s, 시간), 미터(m, 길이), 킬로그램(kg, 질량), 암페어(A, 전류), 켈빈(K, 온도), 몰(mol, 물질의 양), 칸델라(cd, 광도)가 SI를 구성하는 기본단위.
 - ※ 국제도량형총회(CGPM: The General Conference on Weights and Measures)는 BIPM(국제도량형국)에서 주관하는 총회로, 글로벌 측정표준의 주요사항을 결의하는 최고 의사결정기구
- 지난 해 11월, 국제도량형총회는 7개 기본단위 가운데 킬로그램(kg), 암페어(A), 켈빈(K), 몰(mol) 등 4개를 변하지 않는 상수를 활용한 새로운 방식으로 다시 정의했다.

- 새로운 정의는 1875년 미터협약이 체결된 날로 전 세계적으로 기념하는 '세계 측정의 날'인 5월 20일부터 공식 사용된다.
- □ 기본단위 재정의는 과학기술과 산업의 근간이 되는 단위(unit)에 시간의 경과 등으로 인해 오차가 발생하는 것을 원천 차단한다는 의미가 있다.
- 예를 들어, 1889년 백금과 이리듐 합금으로 만든 '국제킬로그램원기'
 가 질량의 기본 단위로 정의됐지만, 그 후 세월의 흐름에 따라 수십
 마이크로그램(μg)의 오차가 발생했다는 사실이 밝혀졌다.
 - 이처럼 단위가 불안정하고, 변할 가능성이 있다는 것은 일상생활과 모든 산업 현장에서 이루어지는 측정값에 오차가 발생할 수 있음을 의미한다.
- 이번에 4개 기본단위가 불변의 상수를 활용하여 새롭게 정의됨에 따라 국제단위계(SI)의 7개 기본단위는 플랑크 상수(ħ), 기본 전하(æ), 볼츠만 상수(ħ), 아보가드로 상수(N₄) 등 고정된 값의 기본상수를 기반으로 '불변의 단위'가 되었다.

〈 SI 기본단위를 정의하는 상수 〉

단위 (기호, 명칭)	단위를 정의하는 상수
시간 (s, 초)	세슘 전이 주파수 (Δν _{Cs} = 9 192 631 770 Hz)를 이용
길이 (m, 미터)	진공에서의 빛의 속력 (c = 299 792 458 m s ⁻¹)를 이용
질량 (kg, 킬로그램)	플랑크 상수 (h = 6.626 070 15 × 10 ⁻³⁴ J s)를 이용
전류 (A, 암페어)	기본 전하 (e = 1.602 176 634 × 10 ⁻¹⁹ C)를 이용
온도 (K, 켈빈)	볼츠만 상수 (k = 1.380 649 × 10 ⁻²³ J K ⁻¹)를 이용
물질의 양 (mol, 몰)	아보가드로 상수 (N _A = 6.022 140 76 × 10 ²³ mol ⁻¹)를 이용
광도 (cd, 칸델라)	단색광 시감효능 (<i>K</i> _{cd} = 683 lm W ⁻¹)를 이용

□ 국가기술표준원은 새롭게 정의된 기본단위와 그에 따른 국가표준기본법 시행령 개정안 내용을 이해관계자들에게 설명하고, 다양한 의견을 수렴하기 위해 공청회를 개최했다.

- 한국표준과학연구원 박연규 물리표준본부장이 '측정표준과 국제단위 재정의'를 주제로 기본단위의 재정의의 중요성과 과학기술분야 및 미래사회에 미치는 영향에 대해 발표했으며,
- 국가표준기본법 시행령 개정 내용에 대한 질의응답을 통해 참석자 들의 이해를 도왔다.

< 국가표준기본법 시행령 개정(안) 주요내용 >

- ▷ 국제 기본단위 재정의 반영
- ▷ 유도단위에 대한 국민의 이해를 높이기 위하여 국제도량형총회에서 의결된 국제단 위의 유도단위 사례를 명시
- ▷ "g" 단위가 국제단위임을 명확히 하기 위해 해설 삽입
- ▷ 국제도량형총회에서 의결한 "국제단위계(SI)와 함께 사용이 허용된 단위(non-SI units)*" 이외에 국내에서 사용이 꼭 필요한 단위(non-SI units)**를 추가
 - * 분(min), 시(h), 일(d), 천문단위(au), 도(°), 분(′), 초("), 헥타르(ha), 리터(L, l), 톤(t), 돌톤(Da). 전자볼트(eV). 네퍼(Np). 벨(B). 데시벨(dB) 등 15개 non-SI 단위
- ** 해리, 놋트(kn), 바아(bar), 옹스트롬(Å) 등 4개 non-SI 단위
- 국가기술표준원은 이해관계자 의견 수렴을 거쳐 국가표준기본법 시행령 개정안을 "세계측정의 날"에 맞추어 5월20일부터 시행할 계획이다.
- □ 국가기술표준원 이상훈 표준정책국장은 "기본단위 재정의가 비록 국민의 일상생활에 직접 느낄 수 있는 변화를 주지는 못하지만, 첨단 과학기술의 기틀인 기본단위의 재정의는 역사적 성과"라고 평가하고,
- "법령 개정에 따라, 각급 학교 교과서와 학습 과정에도 변경된 내용이 반영될 수 있도록 교육부와 협의해하겠다."라고 말했다.

이 보도자료와 관련하여 보다 자세한 내용이나 취재를 원하시면 산업통상자원부 국가기술표준원 표준정책과 임완빈 연구관에게 (☎ 043-870-5347)에게 연락주시

참고 1 국제단위계(SI) 관련 개요

□ 미터협약(Meter Convention)의 체결

- **1875년 5월 20일(세계측정의 날)**, 미터법의 실용성과 체계성을 인정 하며 **세계 17개국이 미터법을 따르기로 함**
- 우리나라는 1959년 미터협약에 가입 후, 1964년 **계량법**에 의거 미터법 전면실시
- ㅇ 미터협약에 따라 세계 측정표준 확립을 위한 국제기구 창설

기구명	목적 및 업무
국제도량형총회(CGPM) The General Conference on Weights and Measures	- 미터협약 회원국 대표들이 참석하는 총회로 CIPM 주관이며 4년마다 개최 - 글로벌 측정표준의 주요사안에 대한 유일한 국제의결기구
국제도량형위원회(CIPM)-	- BIPM 활동의 조정 및 감독
The International Committee for	- CGPM의 최고 자문위원회로서 실질적인 운영 담당 및
Weights and Measures	국제단위의 제개정 필요성 및 국제적 측정표준 이슈 발굴
국제도량형국(BIPM)	- 미터협약을 근거로 설립된 국제표준연구 사무국
The International Bureau of Weights	* 현재 총 60개국 정회원, 42개국 준회원 보유
and Measures	- 전 세계 측정단위와 표준의 국제적 동등성 확보가 목표

□ 국제단위계(SI)

- 미터법을 바탕으로 최첨단의 과학기술을 이용해서 규정한 단위 체계
- 7개 기본단위와 유도단위로 구분
- 기본단위: 미터(m), 킬로그램(kg), 초(s), 암페어(A), 켈빈(K), 칸델라(cd), 몰(mol)
- 유도단위: 기본단위의 조합 또는 기본단위와 다른 유도단위가 조합된 단위
- *기본단위의 조합으로 특별한 명칭을 가진 유도단위는 22종 규정
- 국제단위계(SI)는 1960년 제11차 국제도량형총회(CGPM)에서 채택 결의
- * SI는 국제단위계(The International System of Units)를 의미하는 프랑스어 (Le Système international d'unités)의 약자
- 현재 미국, 미얀마, 라이베리아 세 곳을 제외한 세계 모든 나라가 국제단위계를 사용
 - * 미국은 미터협약의 최초 가입국임에도 자국 단위계 '야드파운드법'을 사용

참고 2 국제단위계(SI) 기본단위의 정의 방법

□ 기존 기본단위 정의의 문제점

ㅇ '인공물로 만든 정의'는 언젠가 변화

- 질량의 단위(kg)은 1889년 백금과 이리듐 합금인 인공물(국제킬로그램원기)의 질량을 1 kg 국제표준으로 삼았으나, 현재 질량이 약 수십 μg 변함
- 탄소의 '질량'을 바탕으로 정의한 mol 또한 kg 원기 질량의 변화로 인한 변동성을 함께 안고 있음
- ※ 길이의 단위 m는 인공물 '국제미터원기'의 길이를 표준으로 삼았으나, 현재는 변하지 않는 상수인 '빛의 속력(c)'을 이용하여 정의(1983)

○ '특정 물질에 의존하는 정의'는 불안정

- 온도의 단위(K)는 '물'의 삼중점이 동위원소의 비율에 따라 달라져 불안정해지는 문제점 발생

ㅇ '애매한 표현이 사용된 정의'는 혼란을 야기

- 전류의 단위(A)는 정의 중 '무한히 길고 무시할 수 있을 만큼'의 정의 표현은 모호하고 실현 어려움
- 현재 각 나라의 표준기관에서는 저항표준기와 전압표준기가 있어 옴의 법칙(전류=전압/저항)을 이용하는 간접적인 방법으로 암페어를 구현

□ 개정된 SI의 기본단위를 정의하는 상수

단위 (기호, 명칭)	단위를 정의하는 상수
시간 (s, 초)	세슘 전이 주파수 (Δν _{Cs} = 9 192 631 770 Hz)를 이용
길이 (m, 미터)	진공에서의 빛의 속력 (c = 299 792 458 m s ⁻¹)를 이용
질량 (kg, 킬로그램)	플랑크 상수 (# = 6.626 070 15 × 10 ⁻³⁴ J s)를 이용
전류 (A, 암페어)	기본 전하 (e = 1.602 176 634 × 10 ⁻¹⁹ C)를 이용
온도 (K, 켈빈)	볼츠만 상수 (k = 1.380 649 × 10 ⁻²³ J K ⁻¹)를 이용
물질의 양 (mol, 몰)	아보가드로 상수 (<i>N</i> _A = 6.022 140 76 × 10 ²³ mol ⁻¹)를 이용
광도 (cd, 칸델라)	단색광 시감효능 (<i>K</i> _{cd} = 683 lm W ⁻¹)를 이용

참고 3 국제단위계(SI) 기본단위 재정의

기본 물리량 (단위의 기호, 명칭)	정의된 연도 (CGPM 차수)	정의
시간 (s, 초)	1967년 (제13차)	초(기호: s)는 시간의 SI 단위이다. 초는 세슘-133 원자의 섭동이 없는 바닥상태의 초미세 전이 주파수 Δν_{Cs}를 Hz 단위로 나타낼 때 9 192 631 770이 되도록 정의된다. 여기서 Hz는 s ⁻¹ 과 같은 단위이다.
길이 (m, 미터)	1983년 (제17차)	미터(기호: m)는 길이의 SI 단위이다. 미터는 진공에서의 빛의 속력 c 를 m s ⁻¹ 단위로 나타낼 때 299 792 458 이 되도록 정의된다.
질 량 (kg, 킬로그램)		킬로그램(기호: kg)은 질량의 SI 단위이다. 킬로그램은 플랑크 상수 h 를 J s 단위로 나타낼 때 6.626 070 15 X 10^{34} 이 되도록 정의된다. 여기서 J s는 kg m² s¹과 같은 단위이다.
전류 (A, 암폐어)		암페어(기호: A)는 전류의 SI 단위이다. 암페어는 기본 전하 e를 C 단위로 나타낼 때 1.602 176 634 X 10 ⁻¹⁹ 이 되도록 정의된다. 여기서 C는 A s와 같은 단위이다.
온도 (K, 켈빈)	2018년 (제26차)	켈빈(기호: K)은 온도의 SI 단위이다. 켈빈은 볼츠만 상수 Æ J K ⁻¹ 단위로 나타낼 때 1.380 649 × 10 ⁻²³ 이 되도록 정의된다. 여기서 J K ⁻¹ 은 kg m ² s ⁻² K ⁻¹ 과 같은 단위이다.
물질의 양 (mol, 몰)		몰(기호: mol)은 물질의 양의 SI 단위이다. 1 몰은 6.022 140 76 X 10^{23} 개의 구성요소를 포함한다. 이 숫자는 아보가드로 상수 N 4를 mol ⁻¹ 단위로 나타낼 때 정해지는 수치로서 아보가드로 수라고 부른다. 어떤 계의 물질의 양(기호: n)은 명시된 특정 구성요소들의 수를 나타내는 척도이다. 특정 구성요소들이란 원자, 분자, 이온, 전자, 그 외의 입자 또는 그런 입자들의 특정한 집합체가 될 수 있다.
광도 (cd, 칸델라)	1979년 (제16차)	칸델라(기호: cd)는 어떤 주어진 방향에서 광도의 SI 단위이다. 칸델라는 주파수 540 × 10 ¹² Hz의 단색광 시간효능 K_{cd} 를 lm W ⁻¹ 단위로 나타낼 때 683이 되도록정의된다. 여기서 lm W ⁻¹ 은 cd sr W ⁻¹ 또는 cd sr kg ⁻¹ m ⁻² s ³ 과 같은 단위이다.

참고 4 국가표준기본법 시행령 개정 주요내용

① 국제단위 재정의에 따른 개정(안 별표 1)

- 국제단위계의 7개 기본단위 중 **질량(kg), 전류(A), 온도(K), 및 물질의 양(mol)**이 변하지 않는 상수를 이용하여 再 정의됨 (2018.11.16.)에 따라. 관련 시행령을 개정 함.(안 별표 1)
- ② 국제단위계의 이해를 돕기 위한 관련 규정의 개정 (안 제9조제2항 신설, 제10조 개정, 제11조 신설, 별표 2 개정, 별표2의2 및 별표2의3 신설, 별표 3 및 별표 4 개정)
 - 유도단위에 대한 국민의 이해를 높이고 명확히 하기 위하여 국제도량 형총회에서 의결된 국제단위의 유도단위 사례를 명시함. (안 제9조제2항 신설, 별표 2 개정. 별표2의2 및 별표2의3 신설)
 - "g" 단위가 국제단위임*을 명확히 하여 국민의 혼돈을 없애기 위한 해설을 "접두어" 항목에 명시함 (안 제10조 개정, 별표 3 개정)
 - * 킬로그램(kilogram)은 역사적인 이유로 이름과 기호에 접두어를 포함하는 유일한 일 관성 있는 국제단위계 단위이다. 질량 단위의 접두어는 단위 명칭 "그램"과 기호 "g" 에 붙여 형성된다. 예를 들어, 10⁻⁶ kg은, 마이크로 킬로그램(µkg)이 아닌, 밀리그램 (mg)으로 표시된다. (The International System of Units(9th edition, 2019)
 - 국제도량형총회에서 의결한 "국제단위계와 함께 사용이 허용된 국제 단위계가 아닌 단위*"에서 누락된 단위 중 국내에서 사용이 꼭 필요한 비 국제단위(non-SI)**에 대하여 각 부처, 청 및 지방자치단체의 의견을 수렴 ・반영하여 관련조항을 개정 함. (안 제11조 신설, 별표 4 개정)
 - * 분(min), 시(h), 일(d), 천문단위(au), 도(°), 분(′), 초("), 헥타르(ha), 리터(L, l), 톤 (t), 돌톤(Da), 전자볼트(eV), 네퍼(Np), 벨(B), 데시벨(dB) 등 15종의 non-SI 단위 ** 해리, 놋트(kn), 바아(bar), 옹스트롬(Å) 등 4종의 non-SI 단위 추가

붙임 1

특별한 명칭과 기호로 표시할 수 있는 유도단위 (제9조제1항 관련/별표 2)

유도량	명칭	기호	다른 국제 단위계의 단위로 표시	기본단위로 표시
1. 평면각	라디안	rad		m/m
2. 입체각	스테라디안	sr		m^2/m^2
3. 진동수, 주파수	헤르츠	Hz		s ⁻¹
4. 힘	뉴턴	N		kg m s ⁻²
5. 압력, 응력	파스칼	Pa		kg m ⁻¹ s ⁻²
6. 에너지, 일, 열량	줄	J	N·m	kg m ² s ⁻²
7. 일률, 동력, 전력, 방사선속, 복사선속	와트	W	J/s	kg m ² s ⁻³
8. 전하, 전하량	쿨롬	С		A s
9. 전위차, 전압, 기전력	볼트	V	W/A	kg m ² s ⁻³ A ⁻¹
10. 전기용량, 정전용량	패럿	F	C/V	$kg^{-1} m^{-2} s^4 A^2$
11. 전기저항	옴	Ω	V/A	kg m ² s ⁻³ A ⁻²
12. 컨덕턴스	지멘스	S	A/V	$kg^{-1} m^{-2} s^3 A^2$
13. 자기선속	웨버	Wb	V·s	kg m ² s ⁻² A ⁻¹
14. 자기선속밀도	테슬라	Т	Wb/m ²	kg s ⁻² A ⁻¹
15. 인덕턴스	헨리	Н	Wb/A	kg m ² s ⁻² A ⁻²
16. 섭씨온도	섭씨도	$^{\circ}$ C		K
17. 광선속	루멘	lm	cd sr	cd sr
18. 조명도	럭스	lx	lm/m^2	cd sr m ⁻²
19. (방사성 핵종의) 활성도	베크렐	$_{\mathrm{Bq}}$		s^{-1}
20. 흡수선량, 비(부여)에너지, 커마	그레이	Gy	J/kg	$m^2 s^{-2}$
21. 선량당량, 주변선량당량, 방향선량	시버트	Sv	J/kg	$m^2 s^{-2}$
당량, 개인선량당량,				
22. 촉매 활성도	카탈	kat		mol s ⁻¹

※ 비고

- 1. 라디안은 평면각의 단위이다. 1 라디안은 원에서 원의 반지름과 같은 길이의 원호에 대응하는 중심각이다. 라디안은 위상각의 단위로도 사용된다. 주기적 현상에서 2π 라디안은 1 주기에 해당한다.
- 2. 스테라디안은 입체각의 단위이다. 1 스테라디안은 구에서 구의 반지름의 제곱과 같은 크기의 구 표면적에 대응하는 중심 입체각이다.
- 3. 헤르츠와 베크렐은 같은 차원의 단위지만, 헤르츠는 주기적 현상의 단위로 사용되며 베크렐은 방사성 핵종의 활성도의 단위로 사용된다.
- 4. 섭씨도는 섭씨 온도를 나타낼 때 사용된다. 섭씨도와 켈빈의 온도 눈금 간격은 동일하다.

붙임 2

기본단위로 표시된 유도단위의 예 (제9조제2항 관련/ 별표 2의2)

유도량	기본단위로 표시된 유도단위
1. 넓이	m^2
2. 부피	m^3
3. 속력, 속도	$\mathrm{m\ s}^{-1}$
4. 가속도	$\mathrm{m\ s}^{-2}$
5. 파동수	m^{-1}
6. 밀도, 질량밀도	$\mathrm{kg\ m}^{-3}$
7. 표면밀도	$\mathrm{kg\ m}^{-2}$
8. 비(比) 부피	$\mathrm{m^3~kg}^{-1}$
9. 전류밀도	$\mathrm{A} \ \mathrm{m}^{-2}$
10. 자기장의 세기	$A m^{-1}$
11. 물질농도량, 농도	$\mathrm{mol}\ \mathrm{m}^{-3}$
12. 질량농도	$\mathrm{kg\ m}^{-3}$
13. 광휘도	${\rm cd\ m}^{-2}$

붙임 3

특별한 명칭과 기호를 가진 유도단위를 포함하는 유도단위의 예 (제9조제2항 관련/별표 2의3)

유도량	유도단위 명칭	기호	기본단위로 표시된 유도단위
1. 점성도	파스칼 초	Pa s	$kg m^{-1} s^{-1}$
2. 힘의 모멘트	뉴턴 미터	N m	$kg m^2 s^{-2}$
3. 표면장력	뉴턴 매 미터	$N m^{-1}$	$kg s^{-2}$
4. 각속도, 각주파수	라디안 매 초	$rad s^{-1}$	s^{-1}
5. 각가속도	라디안 매 제곱초	rad/s ²	s^{-2}
6. 열속밀도, 복사조도	와트 매 제곱미터	$W m^2$	$kg s^{-3}$
7. 열용량, 엔트로피	줄 매 켈빈	$\rm J~K^{-1}$	$kg m^2 s^{-2} K^{-1}$
8. 비열용량, 비엔트로피	줄 매 킬로그램 켈빈	$J~K^{-1}~kg^{-1}$	$m^2 s^{-2} K^{-1}$
9. 비에너지	줄 매 킬로그램	$J kg^{-1}$	$m^2 s^{-2}$
10. 열전도도	와트 매 미터 켈빈	$\mathrm{W} \ \mathrm{m}^{-1} \ \mathrm{K}^{-1}$	$kg m s^{-3} K^{-1}$
11. 에너지 밀도	줄 매 세제곱미터	$\mathrm{J} \ \mathrm{m}^{-3}$	$kg m^{-1} s^{-2}$
12. 전기장의 세기	볼트 매 미터	${ m V~m}^{-1}$	$kg m s^{-3} A^{-1}$
13. 전하밀도	쿨롬 매 세제곱미터	C m ⁻³	$A s m^{-3}$
14. 표면 전하밀도	쿨롬 매 제곱미터	$C m^{-2}$	$A s m^{-2}$
15. 전기선속밀도, 전기변위	쿨롬 매 제곱미터	C m ⁻²	$A s m^{-2}$
16. 유전율	패럿 매 미터	$F m^{-1}$	$kg^{-1} m^{-3} s^4 A^2$
17. 투자율	헨리 매 미터	$\mathrm{H} \ \mathrm{m}^{-1}$	$kg m s^{-2} A^{-2}$
18. 몰에너지	줄 매 몰	$J \text{ mol}^{-1}$	kg m ² s ⁻² mol ⁻¹
19. 몰엔트로피, 몰열용량	줄 매 몰 켈빈	$J K^{-1} mol^{-1}$	$kg m^2 s^{-2} mol^{-1} K^{-1}$
20. (x선 및 γ선의) 조사선량	쿨롬 매 킬로그램	$C kg^{-1}$	A s kg ⁻¹
21. 흡수선량률	그레이 매 초	Gy s ⁻¹	$m^2 s^{-3}$
22. 복사도	와트 매 스테라디안	$W sr^{-1}$	$kg m^2 s^{-3}$
23. 복사휘도	와트 매 제곱미터 스테라디안	$\mathrm{W}~\mathrm{sr}^{-1}~\mathrm{m}^{-2}$	kg s ⁻³
24. 촉매활성도 농도	카탈 매 세제곱미터	kat m ⁻³	$mol s^{-1} m^{-3}$

붙임 4

국제단위계의 접두어(제10조 관련/별표 3)

인 자	접두어	기 호	인 자	접 두 어	기 호
10 ¹	데 카	da	10^{-1}	데 시	d
10^{2}	헥 토	h	10^{-2}	센 티	С
10^{3}	킬 로	k	10^{-3}	밀 리	m
10^{6}	메가	M	10^{-6}	마이크로	μ
10^{9}	기가	G	10-9	나 노	n
1012	테 라	Т	10^{-12}	피 코	р
1015	페 타	Р	10^{-15}	펨 토	f
1018	엑 사	Е	10^{-18}	아 토	a
10^{21}	제 타	Z	10^{-21}	젭 토	Z
10^{24}	요 타	Y	10 ⁻²⁴	욕 토	У

※ 비고

1. 킬로그램(kilogram)은 역사적인 이유로 이름과 기호에 접두어를 포함하는 유일한 일관성 있는 국제단위계 단위이다. 질량 단위의 접두어는 단위 명칭 "그램"과 기호 "g"에 붙여 형성된다. 예를 들어, 10^{-6} kg은, 마이크로 킬로그램(μkg)이 아닌, 밀리 그램(mg)으로 표시된다.

붙임 5

국제단위계와 함께 사용할 수 있는 국제단위계가 아닌 단위 (제11조 관련/별표 4)

명칭	기호	국제단위계의 단위로 나타낸 값	
1. 분	min	1 min = 60 s	
2. 시	h	1 h = 60 min = 3600 s	
3. 일	d	1 d = 24 h = 86 400 s	
4. 천문단위	au	1 au = 149 597 870 700 m	
5. 도	o	$1^{\circ} = (\pi/180) \text{ rad}$	
6. 분	,	$1' = (1/60)^\circ = (\pi/10/800) \text{ rad}$	
7. 초	"	1" = (1/60) ' = (π/648 000) rad	
8. 헥타르	ha	1 ha = 1 hm 2 = 10^4 m 2	
9. 리터	L, 1	$11 = 1 \text{ L} = 1 \text{ dm}^3 = 10^3 \text{ m}^3 = 10^{-3} \text{ m}^3$	
10. 톤	t	$1 t = 10^3 kg$	
11. 돌톤	Da	1 Da = 1.660 538 86 (28) × 10 ⁻²⁷ kg	
12. 전자볼트	eV	$1 \text{ eV} = 1.60217653(14) \times 10^{-19}\text{J}$	
13. 네퍼	Np		
14. 벨	В		
15. 데시벨	dB		
16. 해리		1 해리 = 1852 m	
17.	kn	1 kn = 1 해리 매 시 = (1852/3600) m/s	
18. 바아	bar	1 bar = $0.1 \text{ MPa} = 100 \text{ kPa} = 1000 \text{ hPa} = 10^5 \text{ Pa}$	
19. 옹스트롬	Å	1 Å = 0.1 nm = $100 \text{ pm} = 10^{-10} \text{ m}$	

* 16~19번 4종의 단위는 국내 의견수렴 후 반영한 non-SI 단위임